R1D2 Profiling Python
I spent some time fiddling with Lambda. The code now more or less works.
Moving on to optimization, I started reading about profiling in python.
I’ve been using time
to see how long the script takes to run. Using cProfile
allows you to see how long each specific method call in your application takes to run. Running this on old_posts.py produced the following output.
The following command executes the script under profiling, sorts the results by time and saves the output to a text file.
python -m cProfile -s time old_posts.py > profile.txt
289508 function calls (286008 primitive calls) in 6.616 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
284 5.495 0.019 5.495 0.019 {method ‘read’ of ‘_ssl._SSLSocket’ objects}
24 0.514 0.021 0.514 0.021 {method ‘do_handshake’ of ‘_ssl._SSLSocket’ objects}
24 0.157 0.007 0.157 0.007 {method ‘connect’ of ‘_socket.socket’ objects}
24 0.123 0.005 0.123 0.005 {method ’load_verify_locations’ of ‘_ssl._SSLContext’ objects}
24 0.027 0.001 0.030 0.001 connectionpool.py:410(close)
24 0.015 0.001 0.015 0.001 {built-in method _socket.gethostbyname}
173 0.015 0.000 0.015 0.000 {built-in method marshal.loads}
22 0.013 0.001 0.013 0.001 decoder.py:345(raw_decode)
24 0.012 0.001 0.013 0.001 {built-in method _socket.getaddrinfo}
20 0.012 0.001 0.012 0.001 {built-in method _imp.create_dynamic}
486/483 0.009 0.000 0.017 0.000 {built-in method builtins.build_class}
1019 0.007 0.000 0.007 0.000 {built-in method posix.stat}
24 0.007 0.000 0.007 0.000 {built-in method _scproxy._get_proxy_settings}
189/1 0.005 0.000 6.616 6.616 {built-in method builtins.exec}
2472 0.005 0.000 0.008 0.000 parser.py:68(get_token)
1 0.004 0.004 0.004 0.004 {method ‘read’ of ‘_io.TextIOWrapper’ objects}
266/80 0.003 0.000 0.010 0.000 sre_parse.py:470(_parse)
206 0.003 0.000 0.023 0.000 parser.py:622(_parse)
460 0.003 0.000 0.015 0.000 <frozen importlib._bootstrap_external>:1233(find_spec)
14107 0.003 0.000 0.005 0.000 {built-in method builtins.isinstance}
601 0.003 0.000 0.003 0.000 {built-in method new of type object at 0x107136800}
173 0.003 0.000 0.004 0.000 <frozen importlib._bootstrap_external>:830(get_data)
24 0.003 0.000 0.003 0.000 {built-in method _scproxy._get_proxies}
24068/23811 0.002 0.000 0.004 0.000 {built-in method builtins.len}
3615 0.002 0.000 0.007 0.000 os.py:664(getitem)
3936 0.002 0.000 0.011 0.000 _collections_abc.py:742(iter)
495/71 0.002 0.000 0.010 0.000 sre_compile.py:64(_compile)
1962 0.002 0.000 0.005 0.000 {built-in method builtins.min}
3830 0.002 0.000 0.003 0.000 enum.py:515(new)
48 0.002 0.000 0.002 0.000 {method ‘set_ciphers’ of ‘_ssl._SSLContext’ objects}
148 0.002 0.000 0.002 0.000 {built-in method posix.getcwd}
10300 0.002 0.000 0.003 0.000 parser.py:320(<genexpr>)
3843 0.002 0.000 0.008 0.000 enum.py:265(call)
6335 0.002 0.000 0.002 0.000 {built-in method builtins.getattr}
3642/3195 0.002 0.000 0.021 0.000 {built-in method builtins.hasattr}
1563 0.002 0.000 0.005 0.000 enum.py:801(and)
225 0.002 0.000 0.002 0.000 sre_compile.py:250(_optimize_charset)
4681 0.002 0.000 0.002 0.000 sre_parse.py:232(__next)
6892 0.002 0.000 0.002 0.000 {method ‘decode’ of ‘bytes’ objects}
173 0.002 0.000 0.002 0.000 {method ‘read’ of ‘_io.FileIO’ objects}
By default the wordpress API returns 10 posts per page. Updating this value to 100 decreased the time spent making network calls and overall function calls by almost 50%!
Results after per_page=100
145834 function calls (142393 primitive calls) in 2.679 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
186 2.364 0.013 2.364 0.013 {method ‘read’ of ‘_ssl._SSLSocket’ objects}
5 0.073 0.015 0.073 0.015 {method ‘do_handshake’ of ‘_ssl._SSLSocket’ objects}
5 0.043 0.009 0.043 0.009 {method ‘connect’ of ‘_socket.socket’ objects}
5 0.026 0.005 0.026 0.005 {method ’load_verify_locations’ of ‘_ssl._SSLContext’ objects}
Lessons
Profiling is great. Instead of guessing why my code is slow, I can ask python to tell me explicitly.Most importantly, for the real world. AWS Lambda bills by the nearest 100 milliseconds.
Duration is calculated from the time your code begins executing until it returns or otherwise terminates, rounded up to the nearest 100ms. The price depends on the amount of memory you allocate to your function.So in a model like this, reducing the total time for your code to run from 6 seconds to 3 seconds will also reduce your bill by 50%.
Thank you for reading! Share your thoughts with me on bluesky, mastodon, or via email.
Check out some more stuff to read down below.
Most popular posts this month
- 2024
- Reinstalling Windows at 1am
- SQLite DB Migrations with PRAGMA user_version
- My Custom Miniflux CSS Theme
- How to Disable Wayland in Debian Testing
Recent Favorite Blog Posts
This is a collection of the last 8 posts that I bookmarked.
- Future Fonts from Blog – Brad Frost
- 21st Century C++ from Communications of the ACM
- Submarines DevCon 2025 Keynote Speech from JoshHaines.com
- How I Use AI: Meet My Promptly Hired Model Intern from Armin Ronacher's Thoughts and Writings
- DeepSeek from Maggie Appleton
- Digital Reality Digital Shock from Christopher Butler
- 10 habits to help becoming a Debian Maintainer from Optimized by Otto
- Tiny corners from Manuel Moreale RSS Feed
Articles from blogs I follow around the net
Weekend Update #12
The weekly update, plus bits and bobs that caught my attention this week.
via ODonnellWeb March 30, 2025"An off switch? She'll get years for that."
Vizio: "Please enjoy falling asleep to these calming nature scenes, occasionally punctuated with unhinged fascist rants. As a treat." I left the tv idle while I went to the other room to play with my dog. After about a half an hour, I started heari…
via jwz March 29, 2025Generated by openring